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l EXECUTIVE SUMMARY

A personal computer-based, parallel simulation algorithm for freeway traffic flows was developed and
implemented on two different tyf)es of hardware configurations. The parallel algorithm has distributed memory
architecture, where each processor or personal computer simulates a subsection of freeway and interchanges the
internal boundary data with the adjacent processor or personal computer.

I The macroscopic freeway flow models developed in previous studies were enhanced in this research to fit
into the parallel simulation structure. A set of basic freeway segments was identified and macroscopic simulation

I models were developed for each segment type by enhancing the previous models. The computational cost of each
segment was then calculated and stored to be used in estimating the total computational cost of a given freeway.

The parallel simulation algorithm first decomposes a given freeway section into these basic segments and
determines the locations of the internal boundaries between subsections by balancing the computational cost of all
subsections. The algorithm was first implemented on a network of two personal computers communicating through
the Named Pipe communication function under the Windows NT operating system. To test the performance of the
PC-network prototype parallel simulation systems, a set of hypothetical freeway sections with different lengths
were developed using a 20 mile section of the I-494 freeway in Minneapolis as a basis.

l The test results show a speedup of 1.94 with the two-PC network parallel system over the single PC
sequential simulation, i.e., 49% reduction of the execution time for one-hour simulation of the 20-mile freeway
section. The speedup for one-hour simulation of a 80-mile section was increased to 1.96, which is close to the
upper limit of the parallel processing considering the ideal speedup with two processors is 2.0. Next, the parallel
algorithm was implemented on a multi-processor personal computer equipped with two Pentium processors using

l the multithread programming approach. The communication between two processors was handled through global
variables, which do not require intermachine communication hardware. The performance test using the same test

l freeway sections with the two-PC network case show that, for one-hour simulation period, the speedup with two
threads over the single thread simulation ranged from 1.94 with a 20-mile section to 1.98 for an 80-mile case. The

I speedups with three threads was almost the same as those with two threads, since there were only two processors
available with the PC used in this testing. It was also noted that, while the speedups with the dual processor PC
were constantly better than those with the two-PC network parallel simulation system, the speedup differences
were not significant, indicating the possibility of using low-cost personal computers for more computationally

l extensive applications. Further, the proposed parallel simulation algorithm showed consistent speedups on both

I hardware platforms with different freeway lengths.



Future research needs include the development of a large scale, real time freeway network
simulation system that can quickly analyze traffic conditions using current day traffic data and
evaluate alternative operational strategies for a given problem in real time. This requires processing
of various computations in parallel, such as simulation, optimal parameter calibration, demand
estimation and analysis of results. The availability of the low-cost personal computerbased parallel
computing environment provides an important first step in developing such a real time, large scale
freeway network analysis system. Further, more diverse applications that can take advantage of the
proposed parallel computing structure should be studied. The development of a more efficient
communication module with different procedures also needs to be continued. This includes the

upgrade of the network card and hub device from 10 Mb to 100 Mb and use of high speed PCs.




I. INTRODUCTION

I.1 Background

One of the key elements in developing Advanced Traffic Management Systems is the
ability to determine the best management strategy through on-line assessment of the various
alternatives prior to implementation. Such an analysis requires reliable models that can
realistically represent traffic behavior and efficient computational algorithms that can generate
control solutions in real time. While there has been substantial progress in developing traffic
flow models during last decades, there still exists the lack of an efficient, on-line computational
environment that can be easily accessed by practicing engineers. To be sure, most existing
freeway ramp metering systems use automatic rate-selection strategies, which select appropriate
metering rates in real time without employing rigorous calculation.

Although parallel processing has long been recognized as the most efficient approach in
reducing computational load, the development of parallel processing algorithms that can be
implemented in real time traffic simulation is still in its early stage. A recent approach by
German researchers with parallel supercomputers used a single-bit coding scheme to simulate
individual vehicle behavior (Nagel, et al., 1994). A more notable attempt to apply a distributed,
discrete-event simulation approach to microscopic simulation using a network of Sun
workstations was reported by the researchers in MITRE Corp. (Wang, et al., 1993). In this
research, a large traffic model was decomposed into submodels, which were distributed over a
network of Sun workstations with minimum inter-processor interactions to achieve parallelism.

As reviewed above, the existing applications of parallel processing algorithms for traffic
simulation use either mainframe computers or a network of workstations, which are not easily
accessible by practicing engineers. Furthermore, most parallel processing algorithms developed
to date are machine-specific restricting the portability of the algorithms. Dev'eloping an efficient
parallel simulation system that can be easily accessible by traffic engineers in the field would
make a substantial contribution in determining alternative management strategies, thus

improving traffic performance.



L 2 Research Objectives

This research investigates the feasibility of developing low-cost, personal computer-based
parallel processing procedures that can be applicable to real time simulation of freeway flows.
Specific objectives include,

e Development of a framework for PC-based parallel simulation system

e Enhancements of existing freeway traffic models for parallel simulation

e Development of a PC-based, parallel simulation algorithm for freeway flows.
e Development of a prototype version of a PC-based parallel simulation system

e Performance evaluation of the PC-based parallel freeway simulation system.

L3 Report organization

First, the framework for personal computer based parallel computing is developed in
Chapter II using the Named Pipe intermachine communication function and the multithread
programming approaches. The interprocess communication procedures available in the Windows
NT environment are also reviewed in this chapter. Based on the PC-based parallel computing
structures, a parallel simulation algorithm for freeway traffic flows is developed in Chapter IIL
The enhancements of the macroscopic traffic models and the performance analysis of the
proposed parallel algorithm using the pseudo code are also included in Chapter III.  Chapter IV
includes the development of the prototype parallel simulation systems with two different hardware
configurations.  The testing of the performance for the prototype systems is also included in

Chapter IV. Finally, Chapter V contains the conclusions and future research needs.



II. FRAMEWORK FOR PC-BASED PARALLEL COMPUTING

IL1 Overview of Parallel Computing

Parallel computing has made a tremendous impact on many areas of computer
applications. By‘using more than one processor simultaneously with efficient communication
between subtasks, parallel computing makes it possible to address many computation-intensive
applications, which have been until recently beyond the capability of conventional computing
techniques (Kumar, et.al, 1994).

The key elements in effective parallel computing include:

1) Hardware platform that can support fast communications, data sharing among processors and
scale up to a large number of processors,

2) Efficient parallel algorithm that can take advantage of a given parallel system architecture,

3) Flexible programming environment and performance evaluation tools.

Since all problems are not equally amenable to parallel processing, i.e., for some problems,
assigning partitions to other processors might be more time-consuming than performing the
processing sequentially, designing efficient parallel algorithms largely depends on the nature of a
given problem and the particular hardware architecture to be employed. However, the following
indices are commonly used to evaluate the performance of a parallel algorithm (Kumar, et.al,

1994);

Run time ‘
The serial tun time of a program is the time elapsed between the beginning and the end of its
execution on a sequential computer. The parallel run time is the time that elapsed from the

moment that a parallel computation starts to the moment that the last processor finishes

execution.

Speedup
Speedup is a measure that reflects the relative benefit of executing a program in parallel system. It
is defined as the ratio of the time taken to solve a problem on a single processor to the time

required to solve the same problem on a parallel system with multiple processors. While an ideal



parallel system with n processors can show a speedup equal to n, in practice, due to the
communication overhead, the processors in a parallel system can not contribute 100 percent of

their time in implementing the given algorithm.

Efficiency
Efficiency is a measure of the fraction of time for which a processor is usefully employed. It is
defined as the ratio of speedup to the number of processors, i.e.,
Efficiency = Speedup / # of processors
While the ideal efficiency is equal to one, in practice efficiency is between zero and one.

Cost

Cost of solving a problem on a parallel system can be defined as the product of parallel run time
and the number of processors used. Cost reflects the sum of the time that each processor spends
solving the problem. The cost of solving a problem on a single processor is the execution time of
the sequential algorithm. A parallel system is said to be cost-optimal if the cost of solving a
problem on a parallel computer is proportional to the execution time of the sequential algorithm
on a single processor. Since efficiency is the ratio of sequential cost to parallel cost, a cost-
optimal parallel system has an efficiency of ©(1).

In the following sections, a general parallel computing framework using personal
computers is developed using the interprocess communication procedures available in the
Windows NT operating system. Windows NT is a full 32-bit preemptive multitasking operating
system with the multithreading capabilities and can operate a network of Intel-based personal
computers(Cowart, 1995., Microsoft Corporation, 1994). First, the interprocess communication
procedures in personal computer environment are summarized and the framework for PC-based

parallel computing based on interprocess communications are developed.

IL2 Interprocess Communication Procedures in Windows NT

The major communication methods available in the Windows NT environment are Remote
Process Control (RPC), Windows Sockets, Named Pipe, Mailslots, NetBIOS, IPX/SPX (Shinha
1996, Cowart, 1995, Andrews, 1996). RPC is a collection of libraries and tools that allows the



client/server application writer to focus on the application itself, rather than on the low-level
communication code. With this tool, the application writer designates one or more functions in
the server code that can be remotely called by one or more clients. RPC provides the “glue” that
bonds client/server communications. The client calls some function that looks no different than a
local procedure call, except that the remote procedure is executed at the server’s end. With the
aid of RPC tools and libraries, applications ca become independent of transport protocols, and can
use the Windows NT security that is built into Microsoft Windows NT RPC. Most important,
RPC provides the framework for handling client/server transactions through a simple, familiar
programming model. |

Named Pipe is another interprocess communication method available in Windows NT.
This mechanism is much closer to first in, first out(FIFO) than the “Pipe” mechanism in UNIX. It
allows bi-directional flow of data between the client and the server, who can be on the waits to
read requests sent by the client. The client opens the pipe and sends requests to the server by
writing data into the pipe.

The applications that do not need bi-directional communication can use Mailslots.
Muailslots provides a unidirectional guaranteed (called “first-class” Mailslots) or non-guaranteed
(“second class”) flow of data. However in the Windows NT environment, only second class
Mailslots are available. Any process can create a Mailslots, and any other process can send it a
message by writing a message into the first process’s Mailslots. Mailslots always use broadcast
datagrams to send and receive data.

Windows NT can function in Novell NetWare LANSs. In this environment, an application
can also use the same interfaces to achieve peer-to-peer communication. IPX/SPX can be used for
both connection-oriented and connection-less communication.

One of the low-level communication methods used in some PC-networking environment is
the NetBIOS protocol. NetBIOS exposes a set of interfaces that can be used to write client/server
or peer-to-peer applications, and for both connection-oriented and connection-less
communication.

Windows NT supports also the Windows Socket interface, which, unlike other PC
interfaces, allows applications to use transport protocols(for example, TCP/IP, UDP, AppleTalk)

directly, without imposing any “on-the-wire” protocol overhead.



Another important feature of Windows NT is its multitasking capability, which can .

manage multiple processes that appear to be executing at the same time (Shnha 1996, Andrews,
1996). With its multithread-based, multitasking feature, the Windows NT running on a
multiprocessor system can execute multiple processes simultaneously. This multitasking feature
also ensures that malfunctioning in one executing application cannot cause unexpected behavior in
another application and, more importantly, that a malfunctioning application cannot cause a

system crash.

IL3 Development of PC-based Parallel Computing Structures

In this research, two types of PC-based parallel computing structures are developed: 1) a
distributed memory structure with a network of personal computers connected with the Named
Pipe communication procedure, and 2) a shared memory structure with a multiprocessor PC
using the multithreading feature of the Windows NT. The following sections describe the outline

of each framework.

IL3.1 Distributed Memory Structure with a Network of Personal Computers

Network Communication Structure with Named Pipe

A pipe is an application-level programming construct or interface that can be used to build
an IPC(InterProcess Communication) channel between a client and a server. In Windows NT,
there are two types of pipes for IPC. Named Pipes, as the name implies, are named, and can be
used for inter-machine communication. Another type of pipe is an anonymous pipe, which can
only be used on the same machine.

Named Pipes are used to transmit data between two distinct types of entries, servers and
clients. The main difference is that only a server can "create" a pipe. Once a pipe has been created
by the server, one or more clients can open it. After the pipe is opened, both the server and the

client can call the normal read/write functions to read data from, and to write data into the pipe.

Named Pipe-based Parallel Computing
Using Named Pipe, two adjacent personal computers can interchange data after each PC

performs its own calculation.  This structure resembles the distributed memory structure in



parallel computing and can be applicable for simulating a long freeway section or a large network
of intersections by having each PC handle a subsection of freeway or a subnetwork of a large
network and interchange the data at the boundaries between two adjacent subsections or

subnetworks.  Figure 2-1 shows the simplified structure of the Named Pipe client and server

transferring data.

1on 1

PC #1 Named Plpe PC#2

(Boundary data exchange

Figure 2-1. Framework based on Named Pipe

IL3.2 Shared Memory Structure with Multithreads-based Programming

Multithreads

When a program starts up, the operating system creates a process for the application and
the application starts to execute the instructions in a linear sequence until a jump or call
instruction changes the sequence. Each process contains its own private address space, data and
code segments, and any resources created or opened by the application. A process can start one
or more child processes. Each child process executes in its own address space and contains its
own data and code segments. A child process may share one, some, or all of the resources of its
parent process. In an operating system such as MS-DOS, each process contains a single thread of
execution.

The multithread feature of Windows NT enables a process to have multiple threads of

executions. Further, with a multiprocessor hardware platform, multiple threads of executions can



be run on multiple processors with each thread representing one process. Every thread shares the
process' global variables and virtual address space and any resources owned by the process. Thus,
a file opened by one thread can easily be read by another thread within the same process, provided
that the second thread can get the handle of the file in some way. Usually, this is done through a
global variable. Each thread has its own unique call stack, CPU state and its own thread local
storage(TLC) in which threads-specific static data is stored. So undoubtedly, an additional
overhead is added to the system overhead for the process with multiple threads, but the additional
overhead per thread is generally lower than the overhead caused by each new child process
(Cowart 1995, Sinha 1996, Andrews 1996).

With the presence of two or more threads, synchronization and mutual exclusion among
threads become crucial for an effective execution multiple processes. More than one process can
have a handle to the same synchronization object to make the interprocess synchronization
possible. The following objects are available in Windows NT to resolve the synchronization
problem,;

Critical section, which protects shared resources by ensuring that only one thread can modify the
resource at any given time.

Mute, which works much like critical section objects and have additional features that enable
them to protect resources when multiple threads are used across different processes and different
applications.

Semaphore, which limits the number of threads that can be executed simultaneously.

Event, which prevents a thread from starting until the execution of another thread is complete.

In our application, we need critical section objects for some global variables.

Multithreads-based Parallel Computing

In this research, a parallel computing structure based on the multithreading feature of
Windows NT is developed using the critical section object as the synchronization device with a
multiprocessor personal computer. The communication between threads are handled through
global variables, which resembles a shared memory structure in parallel computing. With a
multiprocessor personal computer, a task is divided into multiple subtasks and each subtask is

handled by a thread interacting with other threads through global variables. The Windows NT



automatically assigns the execution of each thread to different processors. Figure 2-2 illustrates

the simplified structure of the multithread-based parallel computing.

Subtask i Subtask i +1

................. 1l
Thread i Thread i+1
] " Global Varisbles & {
Processor i Processor i+1

Figure 2-2 Simplified structure of multithread-based parallel computing structure






III. DEVELOPMENT OF A PC-BASED PARALLEL SIMULATION ALGORITHM
FOR FREEWAY TRAFFIC FLOWS

1.1 Overview of Macroscopic Freeway Traffic Simulation

Traffic simulation models can be classified into two groups; macroscopic and microscopic.
Macroscopic approach treats traffic as a stream and develops algorithms that estimate traffic
parameters describing the aggregate behavior of traffic flow through time. Whereas microscopic
approach models the behavior of each individual vehicle considering speeds and spacing among
adjacent vehicles. In this research, to achieve maximum computational efficiency, a macroscopic
approach based on simple continuum modeling is adopted. The basic simulation procedure used
in this research for a normal pipeline segment is shown in Figure 3-1.

dx

i-11i |i+1

n+ 1 n n dt n n
ki ‘= 'Z_(kiﬂ + ki—l) + E(qi—l - q”l)

g =q(k™),
uin+1 = qin+1 / kin-H

Figure 3-1 Simulation procedure for pipeline segment

In the above figure, k" , q" and u" denotes density, flow and speed of dx i at time step n,
respectively.  The above finite difference scheme was designed to solve time-dependent
compressible flows containing strong shocks (Lax, 1954) and has been applied to develop a
freeway simulation software (Kwon, et. al., 1994) in the previous studies.  As indicated in the
above equations, the simulation algorithm estimates the density of dx; for the next time step using
the information only from dx;., and dx ;;;.  This makes it possible to develop a distributed
computing algorithm, which divides the whole freeway section into a number of subsections,

depending on the number of processors, and simulate each subsection independently with the

10



exchange of the boundary dx’s information at each time step. The parallel simulation algorithm
developed in this research is based on the above principle and takes advantages of the recent

developments in the communication functions of the personal computers.

IIL2 Development of a PC-based parallel simulation algorithm for freeway flows

Figure 3-2 illustrates the simplified structure of the parallel simulation algorithm developed in this
research. For a given freeway section, the algorithm first determines the total computational cost
of the whole freeway. The optimal distribution of the computational load to each processor is
then determined and the given freeway is divided into multiple subsections based on the number of
processors, i.e., number of PCs available in a network or the number of processors in a
multiprocessor PC. At each time step, the data at the internal boundaries between two adjacent
subsections are first exchanged and each processor or PC simulates the traffic flows of its own

subsection with the boundary data from the adjacent subsection.

Subsection i Interprocess Subsection i+1
Simulation Communication Simulation
(Boundary Data
Exchange)

Figure 3-2. Simplified structure of the Parallel Simulation with Distributed Computing
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Treatment of boundary data exchange

The simulation algorithm developed in this study requires the data exchange at the internal
boundaries between two adjacent subsections at every time step. For example, in Figure 3-3, the
traffic data, i.e., density, of dx i (j) needs to be sent to subsection II (I) to determine the density of

dx j (i) for the next time step.

i1 il j j+||
\ -
g\

——

Subsection I Subsection II

Figure 3-3. Date exchange at internal boundary

In this study, two types of data communication procedures are developed depending on
the hardware platform. First, for a multiple computer network-based parallel simulation, a data
communication module was developed using the Windows NT-based, Named Pipe function,
which handles intermachine communication by treating the first processor as a server and the next
processor as a client (Shinha 1996). After the server creates a pipe, both the server and the client
can call the normal read/write functions to read data from, and to write data into the pipe.
Therefore, at each internal boundary, two communication pipe functions handle the data exchange
every one second. For the multithread-based approach with a multiprocessor PC, the
communication among multiple threads is performed through global variables, which can be

shared by different threads (Shinha 1996, Andrews 1996).

Parallel Simulation Procedures
Figure 3-4 and 3-5 outlines the parallel simulation algorithms developed in this research

for two different personal computer hardware platforms, ie., multiple PC-network and
multiprocessor PC.  As indicated in these figures, two algorithms are identical except the
boundary communication procedure. With the multithread-based approach, the optimal

12



distribution of the computational load to each ‘thread’ is determined depending on the number of
threads to be used, and a given freeway is divided into the same number of subsections as the
number of threads. Usually, the number of threads to be used is same as the number of
processors available in a given multiprocessor PC. At each time step, the data at the internal
boundaries between two adjacent subsections are first exchanged through global variables, and
each thread simulates the traffic flows of its own subsection with the boundary data from the

adjacent subsection.

Determine computational cost of a given freeway

Determine optimal distribution of the computational
cost to each PC in the network and Identify the
internal boundaries between two subsections

Parallel Simulation
PC#1 PC#2 PC #i
Subsection 1 Boundary ¥ sypsection 2> ** *{Subsection i
simulation tl.?(itl?ange | simulation |} simulation

Figure 3-4 Outline of the parallel simulation procedure on a PC-Network

13



Determine Computational Cost for a given freeway

Determine Number of Threads to be used

Determine Optimal Distribution of Computation for
each Thread and Identify internal boundaries

Parallel Simulation
Thread 1 Thread 2 Thread i
Subsection 1 Subsection 2 Subsection i
Simulation Simulation Simulation
Gloval Variables

Figure 3-5. Outline of the parallel simulation procedure on a multiprocessor PC
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III. 3 Enhancement of Freeway Traffic Flow Models for Parallel Simulation
IIL3.1 Overview of Modeling Enhancements

This section presents the macroscopic freeway models enhanced for the parallel simulation
algorithm developed in the previous section. First, a set of basic freeway segment types was
identified and, for each segment type, a macroscopic simulation model is developed by enhancing
the existing traffic models developed in the previous research (Kwon, et. al., 1994). The
segmentation developed in this research facilitates the calculation of the computational cost for a
given freeway, so that the optimal distribution of the computational load can be performed
efficiently.  Figure 3-6 illustrates the basic segments that can be combined to represent most
freeways in the U.S. The modeling enhancements conducted in this research enables the explicit
consideration of the effects of interrupted flow, such as merging, diverging and weaving using
continuum modeling approach. The detailed algorithm for each segment is described in the next

section.

4>IIII>‘I#VI‘{{: j+

Type 1 (pipe) Type 2 (merging)  Type 3 (diverging)  Type 4 (one-lane  Type S (one-lane
- flow split) flow merg)
1 |
- .>. ! |
- — S
B EE K+ L I3
1] [ > ' '
Type 6 (two-lane  Type 7 (two-lane Type 8 (weaving) Type 9 (upstream  Type 10 (downstream
flow split) flow merg) boundary) boundary)

Figure 3-6 Basic segment types
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I1L3.2 Enhanced traffic models for freeway segments

Type 1 segment:

— | [ il i Tl |

n+ 1 n n dt n n
k, 1= E(km +k)+ “Z’E(qi—l ~ ;)

qinﬂ =4q; (kiﬁl):
uin+l — qin+l /kin+1

where, q; (k) = q - k relationship for dx i

q
q
|
'
'
i
1
I
|
|
|
kcr
Type 2 segment:
= j-1 i i+ —
AM

!

1-1

Iy

| Ar 1
k= 2k )+ G @~ ) + M)
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+ 1 At 1
klt '= E(kzt +k;—1) +E(E(%‘—1 +q:)_ M')

Where M = Minimum [Q;, F|]
Q;=0 * Qauiowj; Available Space at J for M
Quiow; =K *uj i K <=k
= Qmax else
a=r+(1.0-r) *kikjum; 1r=0.2
Fi=qk) if k <=k

= Qmx,1 €lse

Type 3 segment

i-l )i it

a 1 At 1
k,'- 1 =5(k;'—1 +k;+1)+5(5(‘1;—1 —q;.+])—D')

t+ 1 t At e 1, 4
kM :5(k; +k,_1)+z-x-(D "'2‘(q1—1 +4;))

where, D' = Minimum [ Q; potential, QU availabie space, EXit Demand at t]

Qipotential = kj*u;  if kj <=k
= Qumax, j else
Ql,:vailable space = (max, 1 if l(l <= ker,l

=k *uy else

17



Type 4 segment
» i ul| u2
U],
->
~>al | a2
i+l

n+ 1 n n dt n n
k; '= ‘2'(k1+1 +k%)+ Ed_x(qi—l - q;)
g+l =qul +qal
Get k;+; from g-k relationship of j+1 with gj.1
For ky; and ky;
n+ 1 n n dt n n
kj+1‘ = E(ki +ki,)+ E(qi = q.)
where, gj+2 = quz + Qa2

k;+2 to be obtained from q-k function of j+2 with gj:>
Get g with k7] using -k function for j

n+l

and ¢, ;

n+l

Split g%, into ¢,

g™ =Maximum [ Min(Exit demand at n+1, g;1, available), gj«1/(# of lanes)]

n+l n+l n+l

90 = 91 ~49a >

Get k,; and k,; from respective g-k functions with q.; and qu1.

18



Type 5 Segment
i2_jl
I'll-l L] . .
N R B e
-
apijar>

For ky'"!' & k!
1. Get k;,"" first
kia™! = 1/2 (k' + k') + AU2Ax (g;2' - q7Y)
to do as above, we need k;»> & gj2
G2 = Qu1' + Gat'
get k;;' with q;' from the g-k function for j

if ky.1'is congested, then k;.,' —> congested.
else uncongested

get k;.,'"' and determine q;,*" using q-k function for j
2. qu"! = g1"""/(number of lanes in j-1)
get k,"'! with g, from g-k for a,
™! = g - gt

get ky'"*! with gu**! from q-k fro u,

For k!
k! = 1/2 (k' + k') + AUV2A% (gja* - gjer')
G’ = Qu' + Gl
get k;1' from q-k for j with q;.1'

if ky' is congested, i.e., ku' >=ky r then k;,' —> congested.

19



Type 6 Segment
iz -1
b d ! .
> il
-

1) k=172 (kpt' + Ker') + AU2A8% (g1* - 1)
where g;1' = qu' + qu' + qu'

get k;.," from the q-k curve of j with q;.,' (Same as other case)

2) kulHl, k12t+l, k]lt+l
Get k;,""!
k™! = 12 (kiz' + k) + AY24x (g2 - ¢)
get qj2' & k;' same as 1)

Get g1 = gui(kj1'"") — from g-k for j

qu'? = qua"*" = ¢/ (number of lanes)

Q™ =g - (™ + qua™)

get kp1, ki2, ku from the corresponding g-k curves.

if k;.,""! is congested, then all k’s are congested
else all k’s uncongested.

20



Type 7 Segment
i+l
miu
*> ]
> [ s
LijLia| +

1) k' =1/2 (ki + kist') + A/2Ax (gjt* - g1')
Qj+1 = Quz + Q22+ qL12
get k;+; from the g-k function of j with g;+; (same as other case)
2) ka, kiay, ke
k™ = 172 (k' + ko) + At2Ax (gt - gje2)
where qj+zt = qu’ + qu22’+ quia’
get k.2’ from the q-k curve function of j+1 (same as other case)
get ki & qjn*!
qr1,1 = Min [x,, qu,, capacity]
where x, = Exit demand at t (given by user)
Qu21 = Max [(% - qui1), (g1 - qui1)/ (number of lanes -1)]

get kr1,1 and ki from the g-k functions for L;, L,.
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Type 8 Segment

al a2 a3 a4
e
-»> D|+»

x1 x2 x3 x4

ko' = 1/2 (Kut'+ kas') + AU2AX (Gar' - Gs3)
ko'l = 172 (kip' + ko) + AVAX [1/2 (Q' - Qud)) + (m' - Y]
M =Min [(a; * qu3,avail. space), (gx, potential)]
o => determined same as type 2 segment.]
D' = Min [Exit Demand *, (qa2, potential), (qxs , available space)]
ko' = 1/2 (ko' + k') + AUAX [1/2 (qu1' + Q) - M]

k™ = 1/2 (keg'+ k') + AUAX [D* - 1/2 (3" + Gua)]

Type 9 Segment : first Ax (Main freeway & on-ramp)

k™! = 172 (ke + ki) + AVAX (g - 1/2 (g0 + q1))

a =qo(ks) if ki <=Kero

else ¢ = qo, max
kdt+l =k + At/AX ( Entering Demand' - QIt)

If the condition of the entering flow is given, i.e., congested or not,

then, k4' is determined from the g-k function of dx 0 with the given entering flow value.
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Type 10 Segment : Downstream boundary dx (mainline and off-ramp)

Exit
Demand

Option #1: No exit demand specification

k'™ =172 (k' + ki) + At/2A% (qut* - qr)
Option #2: Exit demand given

ki =k + A/Ax [1/2 (qu1' + q1') - Exit demand']
Option #3: Exit flow condition given

k'™ =172 (k' + ki) + AV2Ax (@' - 4)

where, q,' = Exit flow at t given by user

k. determined by the q-k function of | with q,' and its condition.

23
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IIL. 4 Complexity Analysis of Parallel Simulation Algorithm

To determine the computational complexity of each segment type, the number of floating
point operations was counted for each model using the pseudo code with the most complex traffic
conditions, which resulted in the upper bound in terms of computation cost for each segment
type. For example, the type 1 requires 5n additions, 5n multiplication’s and n divisions where n is
the number of time steps. Based on the test performed on a 200MHz Pentium 686 processor, the
following execution time ratio was obtained;

+:-:*%:/:sqrt=1:1:1:11.5:69.0
Table 3-1 includes the computational load of each segment type in Figure 3-6.  Appendix
includes the complete set of pseudo code for each segment type, which was used to estimate the

computational cost.

Table 3-1. Computation Cost for each segment type

Type Computation cost Type Computation cost
1 126nC 6 119nC
2 40.2nC 7 1246nC
3 392nC 8 804nC
4 99.9nC 9 226nC
5 949nC 10 13.6nC

C: execution time for one addition,

n: number of time step.

Performance analysis

The theoretical performance of the parallel simulation algorithm was analyzed using a 20 mile
section of I-494 freeway in Minneapolis, Minnesota, as an example. Figure 3-7 illustrates the
geometry of the example freeway. A performance index quantifying the benefit of parallel

simulation is defined as the ratio of the sequential execution time on a single PC to the execution
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time on a parallel system with multiple PCs. Assuming that the parallel simulation is performed
on a three-PC network, the complexity analysis was performed and the example freeway was
divided into three subsections with approximately same computational load. ~ Table 3-2 shows
the number of different segment types for each subsection. Based on the complexity analysis
results, the sequential and parallel execution times for the example freeway are estimated as
follows;

Sequential execution time, T, = 20690Cn + 98473 .4C,

Parallel execution time, T, = 7034.1Cn + 34092.8C + T,
where, T, is the communication time between two adjacent processors.
When T. is negligible, the speedup ratio, i.e., T/T,, becomes 2.94, which is close to 100%
efficiency. However, the actual performance of the parallel system can be substantially affected

by the communication time between two PCs or two processors in a two-processor PC.

Table 3-2. Number of segment types for each subsection

Segment Type | SectionI Section II Section III
1 311 376 355
2 3 1 3
3 1 3 3
4 10 7 8
5 9 8 8
6 0 0 0
7 0 0 0
8 10 4 4
9 9 5 5
10 7 6 6
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Figure 3-7 1-494 test freeway section
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IV. DEVELOPMENT AND EVALUATION OF PROTOTYPE PC-BASED PARALLEL
SIMULATION SYSTEM

IV.1 Prototype parallel simulation system with a two-PC network

Using the data communication module with the Named Pipe function, a prototype parallel
simulation system was developed by networking two IBM-PC compatible personal computers
equipped with a Pentium Pro 686-200 MHz processor. Figure 4-1 shows the structure and
pseudo code of the two-PC network parallel simulation system. After determining the internal
section boundary for a given freeway section by balancing the computational load between two
PCs, the server creates a Named Pipe. Once the simulation starts, the server waits for the client
to connect and reads the data requests from the client. After sending the boundary traffic data,
i.e., density and flow rate for the boundary dx’s, to the client, the server starts the computation
for the simulation of the remaining freeway segments allocated to the server. After the server
finishes the simulation of its subsection traffic flows for the current time step, it goes back to the
waiting mode until the hand shaking with the client is established. The operation of the client is
similar to that of the server. The above server-client interaction through the Named Pipe
communication procedure continues until the end of the simulation period. Table 4-1 shows the

hardware specification of the prototype parallel simulation system developed in this research.

Table 4-1 Prototype System Hardware Specification(PC-Network)

Server and Client

CPU Intel Pentium Pro 686-200 MHz
RAM 16 MB

Ethernet Card SMC 10 Mb

(Twisted Pair)

Operating System Windows NT v3.51

Network software Microsoft Windows Network

Hub SMC TigerHub TP6B (10 Mb)
Compiler Microsoft Visual C++ 2.0
27



Pseudo Code for Server

Pseudo Code for Client
Read Data
Determine internal section Read Data
Create a Named Pipe - Determine internal section
Begin Simulation Begin Simulation
Wait for client to respond Open a Named Pipe
Send boudary data to client Send boudary data to server
Receive boundary data from Receive boundary data from server
Acknowledge receipt to client Close the Named Pipe
Simulate other segments with boundary Simulate other segments with boundary
End Simulation End Simulation
Close the Named Pipe ’

Named Pipe

client

Figure 4-1 Structure of the two PC-Network parallel simulation system
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IV.2 Dual-processor PC-based, parallel simulation System

For the multiprocessor PC system with the multithreading approach, a two-processor PC
from ALR with 2 Pentium Pro 686-200 MHz processors was used in this research. After
determining the internal section boundaries for a given freeway section by balancing the
computational load between threads, the algorithm creates threads according to the specified
number by user.  After storing the boundary traffic data, i.e., density and flow rate for the
boundary dx’s, into the pre-specified global variables, each thread starts the computation for the
simulation of the assigned freeway subsection. When each thread finishes the simulation of its
subsection traffic flows for the current time step, it stores the new boundary data into the global
variables and reads the new boundary data of the adjacent threads from the global variables. Table

3 shows the hardware specification of the multiprocessor PC prototype parallel simulation system

developed in this research.

Table 4-2 Prototype System Hardware Specification (multiprocessor PC)

Specification
CPU Intel Pentium Pro 686-200 MHz (2 CPU)
RAM 16 MB
Operating System Windows NT v3.51
Compiler MS Visual C++2.0
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IV.3 Performance evaluation of the prototype parallel simulation systems

The performance of the prototype systems was evaluated by comparing the execution time
of the parallel algorithm with that of the single processor sequential algorithm implemented with
each hardware platform. The I-494 test section used in the previous chapter, shown in Figure 3-
9, for the complexity analysis was also used for testing the performance of each prototype system.
To evaluate the performance of the two-PC system with different freeway lengths, hypothetical
freeway sections up to 80 miles were created using the 20 mile I-494 section. Table 4-3, 4 and
Figure 4-2 show the comparison of the execution times with single PC and two-PC network
parallel simulation for different lengths of freeways.  As indicated in these tables, the speedup
with the two-PC network ranges from 1.94 for the 20 mile section to 1.96 for the 80 mile section
for one hour simulation, which indicates almost perfect performance of the two-PC parallel
system. It can be noted that the speedup and efficiency with longer simulation time and freeway
lengths are slightly better than those of shorter simulation time and freeways, while the differences

are not significant.

Table 4-3 Execution time (in seconds) for single PC and Two-PC parallel simulation

Freeway 1 Hour Simulation | 20 Minutes Simulation
Length 1PC 2 PC 1PC 2 PC
20 miles 42,781 22.031 12.359 7.11
40 87.656 44,938 25.281 14.234
60 132.484 68.031 38.907 21.375
80 179.735 91.64 53.828 28.969

Table 4-4 Speedup and Efficiency with two-PC Network parallel simulation

Freeway Length 1 Hour simulation 20 Minutes simulation
(miles) Speedup | Efficiency | Speedup | Efficiency

20 1.94 0.97 1.74 0.87

40 1.95 0.98 1.78 0.89

60 \ 1.95 0.97 1.82 0.91

80 1.96 0.98 1.86 0.93

Speedup = Single PC execution time / Two-PC parallel system execution time
Efficiency = Speedup / number of processors
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Figure 4-2 Comparison of the execution times between single PC and two-PC parallel simulation
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Table 4-5 & 6 and Figures 4-3 & 4 show the execution times and the speedup/efficiency with the
dual processor PC with different number of threads. = The execution time with single thread
represents the execution time with the single processor.  As indicated in these tables, the
execution time with two threads on a dual processor personal computer is in average 49% faster
than with the single thread approach for one hour simulation, while 46% faster for the 20 minute
simulation. However, the execution time with three threads are almost same as that of two
threads, indicating the limitations with a dual processor personal computer platform. It can be
also noted that the execution time of two threads is slightly, but constantly faster than that of two-
Overall, the

comparison of the execution times between two-PC network and two-thread parallel simulation

PC network system, which uses an external communication cable to link two PCs.

systems demonstrates the strong performance of the prototype parallel simulation systems
developed in this research and thus the feasibility of the personal computer-based parallel

processing.

Table 4-5 Execution time with multithread-based parallel simulation on a dual processor PC

Freeway Length 1 Hour Simulation 20 Minutes Simulation
1 Thread |2 Thread|3 Thread|1 Thread|2 Thread|3 Thread
20 miles 42,781 22{ 19.859] 12.359 6.859 6.75
40 87.656| 44.578] 46.187} 25.281 13.14] 13.671
60 132.484 66.75 66.734] 38907 19.344| 21.125
80 179.735| 90.641| 89.125| 53.828] 28.641| 27.625

Table 4-6 Speedup and Efficiency with multithread-based parallel simulation

Freeway 1 Hour Simulation 20 Minutes Simulation
Length 2 Threads 3 Threads 2 Threads 3 Threads
(miles) S E S E S E S E

20 1.94 0.97 2.15 1.08 1.80 0.90 1.83 0.92
40 1.97 0.98 1.90 0.95 1.92 0.96 1.85 0.92
60 1.98 0.99 1.99 0.99 2.01 1.01 1.84 0.92
80 1.98 0.99 2.02 1.01 1.88 0.94 1.95 0.97

Speedup = Single PC execution time / Two-PC parallel system execution time
Efficiency = Speedup / number of processors
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Figure 4-3 Comparison of the execution times for one-hour simulation with multithreads

MultiThreads Simulation (20min)
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Figure 4-4 Comparison of the execution times for 20-minute simulation with multithreads
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V. CONCLUSIONS AND FUTURE RESEARCH NEEDS

This report summarized the final results of the research to develop a prototype system for
personal computer (PC)-based parallel simulation of freeway traffic flows. First, the interprocess
communication procedures and the multithread programming approaches in a PC network
environment including multiprocessor PCs were reviewed and a framework for the PC-based
parallel computing was developed using the distributed memory architecture. ~ Next, a parallel
simulation algorithm was developed for freeway traffic flows using the enhanced macroscopic
traffic flow models. The parallel simulation algorithm first divides a given freeway into a set of
subsections by optimally distributing the total computational cost to each subsection depending on
the available number of PCs or processors to be used. Each processor simulates a subsection of
freeway and interchanges the internal boundary data with the adjacent processor, which simulates
its own freeway subsection.  The macroscopic freeway flow models developed in the previous
studies were enhanced in this research to be suitable for the parallel simulation structure. A set
of basic freeway segments was identified and macroscopic simulation models for each segment
type were developed by enhancing the previous models. The computational cost of each
segment was then calculated and stored to be used in estimating the total computational cost of a
given freeway. The parallel simulation algorithm decomposes a given freeway section into these
basic segments and determines the locations of the internal subsection boundaries by distributing
the total computation cost to each processor.

The parallel simulation algorithm was implemented with two types of hardware
configurations: a network of PCs and a single multiprocessor PC.  First, two Intel Pentium-
based personal computers were networked together with the Named Pipe communication function
under the Windows NT operating system. The other type takes advantage of the multithread-
based programming approach with a multiprocessor personal computer, where the Windows NT
allocates each computation thread to each processor. The communication between threads is
performed through global variables, which eliminates the need for external intermachine
communication hardware. In this research, a dual processor PC with the Intel Pentium processors
was used.

The performance of both prototype systems were tested and compared with that of the

single processor-based, sequential simulation algorithm. A 20 mile section of the 1-494 freeway
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in Minneapolis, Minnesota, was used as the base test freeway section and a set of hypothetical
freeway sections with different lengths were created to evaluate the performance of the parallel
algorithm with various conditions.  The test results show the speedup of 1.94 with the two-PC
network parallel system over the single PC sequential simulation, i.e., 49% reduction of the
execution time for one hour simulation of the 20 mile freeway section. The speedub for one hour
simulation of a 80 mile section was increased to 1.96, which is close to the upper limit of the
parallel processing considering the ideal speedup with two processors is 2.0. The speedup values
for a 20 minute simulation with different lengths range from 1.74 for 20 mile to 1.86 for the 80
mile case, indicating the increased benefit of the proposed parallel simulation system with longer
simulation periods.

The performance of the dual processor PC-based parallel simulation showed similar results
to that of the two-PC network system. For one hour simulation period, the speedup with two-
threads over the single thread simulation ranged from 1.94 for a 20 mile section to 1.98 for a 80
mile case.  The speedups with three-threads was almost same as those with two-threads, since
there were only two processors available with the PC used in this testing. It was also noted that
the speedups with the dual processor PC were slightly, but constantly better than those with the
two-PC network parallel simulation system, which indicates the effects of the external
communication. Further, the proposed parallel simulation algorithm showed consistent speedups
on both hardware platforms with different freeway lengths.

Further research needs include the development of a large scale, real time freeway
network simulation system that can quickly analyze the traffic conditions using current day traffic
data and evaluate alternative operational strategies for a given problem in real time. This
requires real time processing of various computations in parallel, such as simulation, optimal
parameter calibration, demand estimation and analysis of results. The availability of the low cost
personal computer-based parallel computing environment provides an important first step in
developing such a real time, large scale freeway network simulation system.  Further, more
diverse applications that can take advantage of the proposed parallel computing structure should
be studied. The development of more efficient communication module with different
procedures also needs to be continued.  This includes the upgrade of the network card and hub
device from 10 Mb to 100 Mb and use of high speed PCs.
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APPENDIX

PERFORMANCE ANALYSIS OF THE PROPOSED PARALLEL SIMULATION
ALGORITHM WITH PSEUDO CODE

1. General description of the parallel simulation algorithm

Set total_cost :=0
Initialize the defauit g-k curve

Repeat
Read input cell

Identify module type of the cell
Identify current_cost
total_cost := total_cost + current_cost
accu_cost[cell_id] := total_cost

Until end_of data

div_cost := total_cost/# of processors

Search the boundary inside B1 pipeline where accu_cost is approximately div_cost
Broadcast the chosen boundary
Do in parallel

Identify the first cell and the last cell for parllelization

For cell := first to last, in parallel
Initialize each cell
EndFor

For time := 1 to current
Do in parallel
Send & Receive 1 constant between neighboring processors

For cell ;= first to last, in parallel
Perform the computation according to module type
EndFor
EndFor



2. Pseudo Code for Basic Freeway Segment Simulation Module

deltax = 100ft

deltat = 1 sec

delta = deltat/deltax

f j: g-k curve for jth cell

ik P okkkkkk

U-113 G+t

For time := 1 to current
k[j,t+17 == 172*(k[j-1,t]+k{j+1,t]) + delta/2*(q[j-1,t]-q[j+1,t])
qlj,t+1] = £ j(k[j,t+1])
ufj,t+1] == qfj,t+1] / k[j,t+1]

EndFor

*kxk P kkkk

j-1] j| i+l

1-1

Read in alpha

Define a q-k curve q_avail for jth cell
Define a g-k curve q_allow := alpha * q_avail for jth cell
Define a g-k curve q_potential for lth cell

For time := 1 to current
M :=min(q_allow(k[j,t]), q_potential(k[L,t]))
K[j,t+17 = 172*(k[j-1,t]+k[j+1,t]) + delta*(1/2*(q[j-1,t]-q[j+1,tD+M)
qlj,t+1] = £ j(kl,t+1D
ufj,t+1] = qfj,t+1] / k[j,t+1]
K[Lt+1] = 172*(k[1,t]+k[1-1,t]) + delta*(1/2*(q[1,t]+q[l-1,t])-M)
qiLt+1] :==f Ik[Lt+1])
ufLt+1] == q[Lt+1] / k[L,t+1]

EndFor
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*kkk B3 kkkk

REED

I-

Define a q-k curve q_potential for jth cell
Define a g-k curve q_avail for Ith cell

For time := 1 to current
Read in Exit Demand
D := min(q_potential(k[j,t]), q_avail(k[Lt]), Exit_Demand)
k[j,t+1] := 1/2*(k[j-1,0]+k[j+1,t]) + delta*(1/2*(q[j-1.t]-q[i+1,t])-D)
qli,t+1] := £_j(k[,t+1])
ufj,t+1] = q[j,t+11 / k[j,t+1]
k[Lt+1] = 1/2*(k[Lt]+k[1-1,t]) + delta*(D-1/2*(q[1,t]+q[l-1,t]D)
qLt+1] = £ 1(k[Lt+1])
ufLt+1] = q[Lt+1] / k[1,t+1]

EndFor

wkkk Bg khkk

| | Wlju2|
11§ et
| | la1laz2]

jtl j+2
Define a q-k curve q_avail for (j+1)th cell
For time := 1 to current
Read in Exit_Demand
K[j,t+1] := 1/2*(k[j-1,t]+k[+1,t]) + delta/2*(q[j-1.t]-qli+1.t])
qfj,t+1] = £_jkfj,t+1D)
ufj,t+1] := q[j,t+1] / k[j,t+1]
Given q[j+2.t], get k[j+2,t]

k[j+1,t+1] := 1/2* k[, t1+k[+2,4]) + delta/2*(ql.t1-ali+2.tD
ql+1,t+1] = f£_G+IHEK+L D)



g[a_1,t+1] ;= max(min(Exit_Demand, q_avail(k[j+1,t+1]), q[j+1,t+1]/# of lanes)
Get k[a_1,t+1]
ufa_1,t+1} :=qfa_1,t+1] /k[a_1,t+1]

qlu_1,t+1] := qfj+1,t+1] - q[a_1,t+1]
Get k[u_1,t+1]
ufu_L,t+1] = qlu_1,t+1] / k[u_1,t+1]

EndFor

k% B§ k¥

_{i-13p 1] | |
t=——lj [3+1]
la_{l-1}ja_1] | |

2 1

For time := 1 to current
Given q[j-2,t], get k[j-2,t]

k[j-1,t+1] == 1/2*(k[j-2,t]+k[j.t]) + delta/2*(q[j-2,t]-q[i.t])
qfj-1,t+1] :=f_{j-1}(k[j-1,t+1])

qla_Lt+1] := q[j-1,t+1] / # of lanes
Get k[a_L,t+1]
u[a_Lt+1] =q[a_Lt+1] / k[a_Lt+1]

qlu_Lt+1] := q[j-1,t+1] - q[a_Lt+1]

Get k[u_Lt+1]

ufu_Lt+1] = qu_Lt+1] / k[u_Lt+1]

k[j,t+1] = 172*k[j-1,0)+k[j+1,£]) + delta/2*(q[j-1,t]-q[j+1,t])
qlj,t+1] == £_j(k[j,t+1])

ufj,t+1] = q[j,t+1] / k[j,t+1]

EndFor
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For time := 1 to current

K[j,t+1] = 1/2*(k[j-1,t]}+k{+1,1]) + delta/2*(q[j-1,t]-q[i+1,1])
ql,t+1] := £ jkf,t+1])
ufj,t+1] := qfj,t+1] / k[j,t+1}

Given qfj-2,t], get k[j-2,1]
k[j-1,t+1] := 1/2%k[j-2,t]+kj,t]) + delta’2*(q[j-2,t]-q0.tD
qli-1,t+1] := £_{j-1}(k[j-1,t+1])

g[L_1,t+1] := qfj-1,t+1] / # of lanes

q[L_2,t+1] := q[L_1,t+1]

q[U_Lt+1] = q[j-1,t+1] - (q[L_1,t+1]+g[L_2,t+1])
Get k[L_1,t+1], k[L_2,t+1] and k[U_Lt+1]

ufL_1,t+1] := q[L_1,t+1] /k[L_1,t+1]
wL_2,t+1] = q[L_2,t+1] / k[L_2,t+1]
u[U_Lt+1] == q[U_Lt+1] / k[U_Lt+1]

EndFor

*kk%k BT *¥kx

jtl

Compute q_capacity for L_1 cell
q_capacity := q_max / # of lanes

For time := 1 to current

K[j,t+1] == 1/2*(k[j-1,t1+k[j+1,t]) + delta/2*(q[j- L t]-q[i+1.t])
qli.t+1] = £ jkGit+1D)



ufj,t+1] := q[j,t+1] / k[j,t+1]

Given qfj+2.t], get k[+2,t]
k[j+1,t+1] := 172%[j,t]Hk[+2,t]) + delta’2*(q[j,t]-q[j+2.t])
qli+L,t+1] =1 {j+1}(k[j+1,t+1])

Read in Exit Demand

q[L_1,t+1] == min(Exit Demand, q_capacity)

q[L_2,t+1] := max((Exit_Demand-q[L_1,t+1]), (q[j+1,t+1]1q[L_1,t+1])/(# of lanes-1))
q[U_L,t+1] := qfj+1,t+1] - q[L_1,t+1] - q[L_2,t+1]

Get k[L_1,t+1], k[L_2,t+1] and k[U_1,t+1]

u[L_1,t+1] = q[L_1,t+1] / k[L_1,t+1]

u[L_2,t+1] =q[L_2,t+1]/Kk[L_2,t+1]

u[U_Lt+1] = q[U_1,t+1] / k[U_1,t+1]

EndFor

*kkk BR kkk*

la_lja_2ja_3|... [a_n|

x_1jx_2|x_3| ... |x_n|

Read in alpha

Define a q-k curve q_potential for a_2 cell
Define a q-k curve q_avail for a_3 cell
Define a q-k curve q_allow := alpha * q_avail for a_3 cell

Define a q-k curve q_potential for x_2 cell
Define a q-k curve q_avail for x_3 cell

For time := 1 to current
Read in Exit Demand

M = min(q_allow(k[a_3,t], q_potential(k[x_2.t]))
D := min(Exit Demand, q_potential(k[a_2,t]), q_avail(k[x_3,t]))

kix_2.t+1] := 172*(k[x_1,t]+k[x_2,t]) + delta*(1/2*(q[x_L,t]+q[x_2,t]))-M)
qlx_2,t+1] =f x_2(k[x_2,t+1])
u[x_2,t+1] == q[x_2,t+1] / k[x_2,t+1]

K[x_3,t+1] := 1/2%(k[x_3,0J+k[x_4,1]) + delta*(D-1/2*(q[x_3,{]+q[x_4,t]))
qlx_3,t+1] := £ x_3(k[x_3,t+1])
u[x_3,t+1] := q[x_3,t+1] / k[x_3,t+1]

k[a_2,t+1] := 1/2*(k[a_1,t]+k[a_3,t]) + delta/2*(q[a_1,t]q[a_3,t])
qla_2,t+1] :=f a 2(k[a_2,t+1])
ufa_2,t+1] := qfa_2,t+1] / k[a_2,t+1]



K[a_3,t+1] := 1/2%(k[a_2,t]+k[a_4,t]) + delta*(1/2*(q[a_2,t]-q[a_4,t))+(M-D))
qa_3,t+1) :=f a 3(k[a_3,t+1])
ufa_3,t+1] .= qfa_3,t+1] / k[a_3,t+1]

EndFor

kR kR Ok kR kkk

|...............
|d10]1]

|
Define a q-k curve q_I for a dummy cell d
Initialize k[d,0]
For time := 1 to current
Read in Ent_Demand
k[0,t+1] := 1/2*(k[0,t]+k[1,t]) + delta*(q_I(k[d,t]-1/2*(q[0,t]+q[1,t]))
q[0,t+1] := £_O(k[0,t+1])
u[0,t+1] := q[0,t+1] / k[0,t+1]
k[d,t+1] := k[d,t] + delta*(Ent_Demand-q_I(k[d.t]))

EndFor

*kkk B *¥**
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Option 1: For time := 1 to current
k[Lt+1] = 1/2*(k[1-Lt]+k[Lt]) + delta/2*(q[1-1,t]-qlLt])
qLt+1] := £ Ik[Lt+1])
u[lt+1] = q[Lt+1] / k[1,t+1]
EndFor
Option 2 : For time := 1 to current
Read in Exit_Demand
k[1,t+1] := k[L,t] + delta*(1/2*(q[I-1,t]+q[Lt])-Exit_Demand)
qiLt+1] = Ik[Lt+1])
ufLt+1] := q[Lt+1] / k[L,t+1]

EndFor
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3. Running Time Analysis

The following running time analysis was performed with a Pentium 90 Mhz Personal Computer
from Blue Star.

3.1 Worst Case Running Time Analysis
The following is the worst case computational complexity for each module type.

Bl :12.6cn (5+5* 1/)n

B2 :40.2cn (16+19*% 2/)n

B3 :39.2cn (16+ 18* 2/)n

B4 :99.9cn (28+ 30* 10/ 3sqrt)n

BS5 :94.9cn (26+ 27* 10/ 3sqrt)n

B6 :119cn  (32+ 32* 13/ 4sqrt)n

B7 :124.6¢n (35+ 32* 14/ 4sqrt)n

B8 :80.4cn (33+37*4/)n

B9 :22.6¢cn (10+ 10* 1/)n

B10 : 13.6cn(option 1) or 12.6¢cn(option 2)

where,

1. n : # of time step
2. ¢ : execution time for 1 addition
+:-:%:/:sqrt=c:c:c:2.6¢c:53c

3.2 Best Case Running Time Analysis

The following is the best case computational complexity for each module type.

Bl : (3+3*1/)n
B2 : (8+9*2/)n
B3 : (8+8*2/)n
B4 : (10+8*4/)n
BS5 : (10+ 8* 4/)n
B6 : (12+ 8% 5/)n
B7 : (15+8*6/)n
B8 : (17+17* 4)n
B9 : (6+5*%1/)n
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4. Initialization Cost for Each Module Type

Initialization for each cell j involves 3 steps.
1. Get the parameter q_max
2. Modify the default g-k curve and obtain new coefficients
3. Given q[j,0], compute k[j,0].

The running time analysis was done based on the existing codes.
1.0
2. 56.6¢c
3.19.5¢

Therefore, the initialization cost for each cell is 76.1c

B1
B2
B3
B4
BS
B6
B7
B8
B9

:76.1c

:76.1c*2

:76.1c*2

:76.1c * 3

:76.1c * 3

:76.1c*4

:76.1c* 4

:76.1c*2

: 76.1c ( will change if k_d needs to be computed)

B10: 76.1c

1. B2(B3,B8) involves 2 cells, so multiply 2
B4(B5) involves 3 cells, so multiply 3
B6(B7) involves 4 cells, so multiply 4

2. ¢ : execution time for 1 addition

+:-:%:/:sqrt=c:c:c:2.6c:5.3c

3. Note : The costs could change depending on how the code is implemented



5. Performance Analysis of the Proposed Parallel Simulation Algorithm with the Example
Freeway Section

Peformance Indices

Speedup, S : ratio of the sequential execution time on a uniprocessor to the parallel execution time on a
parallel computer with p processors

1. measure of the relative benefit of solving a problem in parallel
2. theoretically, S cannot be > p

Efficiency, E : ratio of speedup to the number of processors

1. measure of the fraction of the time a processor is usefully employed
2. theoretically, E cannot be > 1

Parallel Cost : the product of parallel execution time and the number of processors used
=> reflects the sum total of the time spent by all the processors in solving the problem.

Cost Optimal : A parallel algorithm is Cost Optimal if the parallel cost is proportional to the execution time of
the best known serial algorithm on a single processor.

Notations

p : number of processors

¢ : time cost(execution time) for 1 addition
t_s : startup time for communication

t_w : time to send/receive 1 constant

T_s : sequential execution time

T_p : parallel execution time

The ratio of execution time among +,-,* /,sqrt (for the 90 Mhz Pentium processor):
+:-:%:/:sqrt=c:c:c:2.6¢c:53¢C

Example Peformance Analysis with the test freeway section
In this example, the parallel architecture is linear array with p processors.
The given example freeway can be decomposed as follows:

Segment Type  Total number of segments

Bl 1042
B2 7
B3 7
B4 25
BS 25
B6 0
B7 0
B8 18
B9 19

B10 19



< On a Uniprocessor >
Therefore, the sequential execution time on a single processor is
T_s=20690cn + 98473.4¢

< On 3 processors >

I I i1
Bl 311 376 355
B2 3 1 3
B3 1 3 3
B4 10 7 8
BS 9 8 8
B6 0 0 0
B7 0 0 0
B8 10 4 4
B9 9 5 5
B10 7 6 6

Computational cost 7034.1cn  6870.1cn 6785.8cn
Initializaion cost 31353.2¢ 34092.8¢c 33027.4c
Communication cost t_s+2t w t_ sH2t w
Therefore, the parallel execution time is

T_p=7034.1cn + 33928.8c + t_s+2t_w
(7034.1cn + 34092.8¢ + t_s+2t_w)

This algorithm is one of the best because

1. S is near p (in this example, p=3)
S=T_s/T_p-—>2.94 as n gets large(goes to infinity)

2.Eisnearl
E = S/p -—> 0.98 as n gets large(goes to infinity)

3. Cost optimal because pT_p =3 * (7034.1cn + 33928.8c +t_s+2t_w)
is proportional to T_s



